Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80.814
Filtrar
1.
Exp Clin Transplant ; 22(3): 229-238, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38695592

RESUMEN

OBJECTIVES: The eradication of leukemia cells while sparing hematopoietic stem cells in the graft before autologous hematopoietic stem cell transplant is critical to prevention of leukemia relapse. Proliferating cells have been shown to be more prone to apoptosis than differentiated cells in response to ultraviolet radiation; however, whether leukemia cells are more sensitive to ultraviolet LED radiation than hematopoietic stem cells remains unclear. MATERIALS AND METHODS: We compared the in vitro responses between murine leukemia L1210 cells and murine hematopoietic stem cells to 280-nm ultraviolet LED radiation. We also investigated the effects of ultraviolet LED radiation on the tumorigenic and metastatic capacity of L1210 cells and hematopoietic stem cell hematopoiesis in a mouse model of hematopoietic stem cell transplant. RESULTS: L1210 cells were more sensitive to ultraviolet LED radiation than hematopoietic stem cells in vitro, as evidenced by significantly reduced colony formation rates and cell proliferation rates, along with remarkably increased apoptosis rates in L1210 cells. Compared with corresponding unirradiated cells, ultraviolet LED-irradiated L1210 cells failed to generate palpable tumors in mice, whereas ultraviolet LED-irradiated bone marrow cells restored hematopoiesis in vivo. Furthermore, transplant with an irradiated mixture of L1210 cells and bone marrow cells showed later onset of leukemia, milder leukemic infiltration, and prolonged survival in mice, compared with unirradiated cell transplant. CONCLUSIONS: Our results suggest that ultraviolet LED radiation can suppress the proliferative and tumorigenic abilities of leukemia cells without reducing the hematopoietic reconstitution capacity of hematopoietic stem cells, serving as a promising approach to kill leukemia cells in autograft before autologous hematopoietic stem cell transplant.


Asunto(s)
Apoptosis , Proliferación Celular , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Animales , Células Madre Hematopoyéticas/efectos de la radiación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/metabolismo , Apoptosis/efectos de la radiación , Hematopoyesis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Línea Celular Tumoral , Rayos Ultravioleta/efectos adversos , Ratones , Ratones Endogámicos C57BL , Factores de Tiempo , Terapia Ultravioleta
2.
J Contemp Dent Pract ; 25(3): 276-279, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690702

RESUMEN

AIM: The current study was carried out to assess the interaction between fibrin clots and dental implants following various surface treatments. MATERIALS AND METHODS: In this investigation, 45 dental implants with dimensions of 16 mm in length and 5 mm in diameter were utilized. They were divided up into three groups, each consisting of fifteen samples. Group I: Control; Group II: Ultraviolet (UV) light treated; and group III: Sandblasted and acid-etching (SLA) treated. Healthy volunteers' venous blood samples were drawn into vacutainer tubes without the use of anticoagulants. The samples were centrifuged for 3 minutes at 2700 rpm in a table centrifuge. The entire implant was submerged in room-temperature liquid fibrinogen for 60 minutes. Then, scanning electronic microscopy (SEM) was used to examine each sample. The inter- and intragroup assessments were obtained using the Mann-Whitney U test and the Kruskal-Wallis test; p-values less than 0.05 were regarded as statistically significant. RESULTS: The maximum adhesion of fibrin clot was found in SLA treated group (2.42 ± 0.10) followed by the UV light-treated group (2.18 ± 0.08) and control group (1.20 ± 0.02). There was a statistically significant difference found between the three surface-treated groups (p < 0.001). CONCLUSION: All surface-treatment methods exhibit adhesion between the implant surface and the fibrin clot. However, the highest adherence of fibrin clot was found in SLA treated group compared to the UV light-treated and control group. CLINICAL SIGNIFICANCE: The physical and chemical characteristics of an implant's surface have a significant impact on the way blood clots organize. At the interface between the implant and the bone, blood clot production can initiate and facilitate the healing process. How to cite this article: Jalaluddin M, Ramanna PK, Swain M, et al. Evaluation of Fibrin Clot Interaction with Dental Implant after Different Surface Treatments: An In Vitro Study. J Contemp Dent Pract 2024;25(3):276-279.


Asunto(s)
Implantes Dentales , Fibrina , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Humanos , Técnicas In Vitro , Coagulación Sanguínea , Rayos Ultravioleta , Grabado Ácido Dental
3.
FASEB J ; 38(9): e23641, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38690717

RESUMEN

Cholinergic urticaria is a dermatological disease characterized by the presence of large patches of red skin and transient hives triggered by factors, such as exercise, sweating, and psychological tension. This skin problem is hypothesized to be attributed to a reduced expression of acetylcholinesterase (AChE), an enzyme responsible for hydrolyzing acetylcholine (ACh). Consequently, ACh is thought to the leak from sympathetic nerves to skin epidermis. The redundant ACh stimulates the mast cells to release histamine, triggering immune responses in skin. Here, the exposure of ultraviolet B in skin suppressed the expression of AChE in keratinocytes, both in in vivo and in vitro models. The decrease of the enzyme was resulted from a declined transcription of ACHE gene mediated by micro-RNAs, that is, miR-132 and miR-212. The levels of miR-132 and miR-212 were markedly induced by exposure to ultraviolet B, which subsequently suppressed the transcriptional rate of ACHE. In the presence of low level of AChE, the overflow ACh caused the pro-inflammatory responses in skin epidermis, including increased secretion of cytokines and COX-2. These findings suggest that ultraviolet B exposure is one of the factors contributing to cholinergic urticaria in skin.


Asunto(s)
Acetilcolinesterasa , Queratinocitos , MicroARNs , Piel , Rayos Ultravioleta , Urticaria , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/genética , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Animales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Piel/efectos de la radiación , Piel/metabolismo , Urticaria/metabolismo , Urticaria/etiología , Ratones , Acetilcolina/metabolismo , Masculino
4.
Harefuah ; 163(5): 295-297, 2024 May.
Artículo en Hebreo | MEDLINE | ID: mdl-38734942

RESUMEN

INTRODUCTION: During the global outbreak of coronavirus disease 2019 pandemic, people sought ways to disinfect their domestic and public surroundings. One of the sanitation options included the usage of ultraviolet-C (UVC) lamps since UVC radiation has been shown to effectively inactivate the SARS-Coronavirus. UVC radiation may also be effective against the SARS-CoV-2 virus. Here we report four cases of bilateral photokeratitis due to the improper usage of UV lamps during the first outbreak of COVID-19 in Israel. METHODS: We collected 4 case reports from patients who were diagnosed with bilateral photokeratitis due to improper usage of UV lamps in their domestic environment from May to December 2020 during the first outbreak of COVID-19 in Israel. RESULTS: A total of four patients presented with signs and symptoms of bilateral photokeratitis after exposure to UV lamps. DISCUSSION: Acute exposure of UVC to the cornea may cause "burns", known as photokeratitis. The signs of photokeratitis usually appear a few hours after the exposure. Precautious steps to educate the population must include using protective eyewear in any exposure to UV light and avoiding the use of germicidal lamps in public locations with exposure to the population.


Asunto(s)
COVID-19 , Queratitis , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , COVID-19/prevención & control , Masculino , Israel/epidemiología , Femenino , Queratitis/etiología , Persona de Mediana Edad , Adulto
5.
Cell Death Dis ; 15(5): 321, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719812

RESUMEN

RAD18, an important ubiquitin E3 ligase, plays a dual role in translesion DNA synthesis (TLS) and homologous recombination (HR) repair. However, whether and how the regulatory mechanism of O-linked N-acetylglucosamine (O-GlcNAc) modification governing RAD18 and its function during these processes remains unknown. Here, we report that human RAD18, can undergo O-GlcNAcylation at Ser130/Ser164/Thr468, which is important for optimal RAD18 accumulation at DNA damage sites. Mechanistically, abrogation of RAD18 O-GlcNAcylation limits CDC7-dependent RAD18 Ser434 phosphorylation, which in turn significantly reduces damage-induced PCNA monoubiquitination, impairs Polη focus formation and enhances UV sensitivity. Moreover, the ubiquitin and RAD51C binding ability of RAD18 at DNA double-strand breaks (DSBs) is O-GlcNAcylation-dependent. O-GlcNAcylated RAD18 promotes the binding of RAD51 to damaged DNA during HR and decreases CPT hypersensitivity. Our findings demonstrate a novel role of RAD18 O-GlcNAcylation in TLS and HR regulation, establishing a new rationale to improve chemotherapeutic treatment.


Asunto(s)
Acetilglucosamina , Proteínas de Unión al ADN , Antígeno Nuclear de Célula en Proliferación , Recombinasa Rad51 , Reparación del ADN por Recombinación , Ubiquitina-Proteína Ligasas , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ubiquitina-Proteína Ligasas/metabolismo , Acetilglucosamina/metabolismo , Recombinasa Rad51/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fosforilación , Replicación del ADN , Ubiquitinación , Roturas del ADN de Doble Cadena , ADN Polimerasa Dirigida por ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Daño del ADN , ADN/metabolismo , Células HEK293 , Rayos Ultravioleta , Unión Proteica , Glicosilación , Síntesis Translesional de ADN
6.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731413

RESUMEN

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Asunto(s)
Arbutina , Envejecimiento de la Piel , Rayos Ultravioleta , Arbutina/farmacología , Rayos Ultravioleta/efectos adversos , Animales , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Ratones , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Humanos , Piel/efectos de la radiación , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
7.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731513

RESUMEN

The various wastes generated by silkworm silk textiles that are no longer in use are increasing, which is causing considerable waste and contamination. This issue has attracted widespread attention in countries that use a lot of silk. Therefore, enhancing the mechanical properties of regenerated silk fibroin (RSF) and enriching the function of silk are important directions to expand the comprehensive utilization of silk products. In this paper, the preparation of RSF/Al2O3 nanoparticles (NPs) hybrid fiber with different Al2O3 NPs contents by wet spinning and its novel performance are reported. It was found that the RSF/Al2O3 NPs hybrid fiber was a multifunctional fiber material with thermal insulation and UV resistance. Natural light tests showed that the temperature rise rate of RSF/Al2O3 NPs hybrid fibers was slower than that of RSF fibers, and the average temperature rose from 29.1 °C to about 35.4 °C in 15 min, while RSF fibers could rise to about 40.1 °C. UV absorption tests showed that the hybrid fiber was resistant to UV radiation. Furthermore, the addition of Al2O3 NPs may improve the mechanical properties of the hybrid fibers. This was because the blending of Al2O3 NPs promoted the self-assembly of ß-sheets in the RSF reaction mixture in a dose-dependent manner, which was manifested as the RSF/Al2O3 NPs hybrid fibers had more ß-sheets, crystallinity, and a smaller crystal size. In addition, RSF/Al2O3 NPs hybrid fibers had good biocompatibility and durability in micro-alkaline sweat environments. The above performance makes the RSF/Al2O3 NPs hybrid fibers promising candidates for application in heat-insulating and UV-resistant fabrics as well as military clothing.


Asunto(s)
Óxido de Aluminio , Fibroínas , Nanopartículas , Rayos Ultravioleta , Fibroínas/química , Nanopartículas/química , Óxido de Aluminio/química , Animales , Bombyx , Calor , Humanos , Seda/química
8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731895

RESUMEN

UVB radiation is known to induce photodamage to the skin, disrupt the skin barrier, elicit cutaneous inflammation, and accelerate the aging process. Agaricus blazei Murill (ABM) is an edible medicinal and nutritional fungus. One of its constituents, Agaricus blazei Murill polysaccharide (ABP), has been reported to exhibit antioxidant, anti-inflammatory, anti-tumor, and immunomodulatory effects, which suggests potential effects that protect against photodamage. In this study, a UVB-induced photodamage HaCaT model was established to investigate the potential reparative effects of ABP and its two constituents (A1 and A2). Firstly, two purified polysaccharides, A1 and A2, were obtained by DEAE-52 cellulose column chromatography, and their physical properties and chemical structures were studied. A1 and A2 exhibited a network-like microstructure, with molecular weights of 1.5 × 104 Da and 6.5 × 104 Da, respectively. The effects of A1 and A2 on cell proliferation, the mitochondrial membrane potential, and inflammatory factors were also explored. The results show that A1 and A2 significantly promoted cell proliferation, enhanced the mitochondrial membrane potential, suppressed the expression of inflammatory factors interleukin-1ß (IL-1ß), interleukin-8 (IL-8), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α), and increased the relative content of filaggrin (FLG) and aquaporin-3 (AQP3). The down-regulated JAK-STAT signaling pathway was found to play a role in the response to photodamage. These findings underscore the potential of ABP to ameliorate UVB-induced skin damage.


Asunto(s)
Agaricus , Proliferación Celular , Proteínas Filagrina , Células HaCaT , Rayos Ultravioleta , Agaricus/química , Humanos , Rayos Ultravioleta/efectos adversos , Proliferación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Polisacáridos Fúngicos/farmacología , Polisacáridos Fúngicos/química , Polisacáridos/farmacología , Polisacáridos/química , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Citocinas/metabolismo
9.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731985

RESUMEN

The effect of UV-B radiation exposure on transgenerational plasticity, the phenomenon whereby the parental environment influences both the parent's and the offspring's phenotype, is poorly understood. To investigate the impact of exposing successive generations of rice plants to UV-B radiation on seed morphology and proanthocyanidin content, the local traditional rice variety 'Baijiaolaojing' was planted on terraces in Yuanyang county and subjected to enhanced UV-B radiation treatments. The radiation intensity that caused the maximum phenotypic plasticity (7.5 kJ·m-2) was selected for further study, and the rice crops were cultivated for four successive generations. The results show that in the same generation, enhanced UV-B radiation resulted in significant decreases in grain length, grain width, spike weight, and thousand-grain weight, as well as significant increases in empty grain percentage and proanthocyanidin content, compared with crops grown under natural light conditions. Proanthocyanidin content increased as the number of generations of rice exposed to radiation increased, but in generation G3, it decreased, along with the empty grain ratio. At the same time, biomass, tiller number, and thousand-grain weight increased, and rice growth returned to control levels. When the offspring's radiation memory and growth environment did not match, rice growth was negatively affected, and seed proanthocyanidin content was increased to maintain seed activity. The correlation analysis results show that phenylalanine ammonialyase (PAL), cinnamate-4-hydroxylase (C4H), dihydroflavonol 4-reductase (DFR), and 4-coumarate:CoA ligase (4CL) enzyme activity positively influenced proanthocyanidin content. Overall, UV-B radiation affected transgenerational plasticity in seed morphology and proanthocyanidin content, showing that rice was able to adapt to this stressor if previous generations had been continuously exposed to treatment.


Asunto(s)
Oryza , Proantocianidinas , Rayos Ultravioleta , Proantocianidinas/metabolismo , Oryza/efectos de la radiación , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Semillas/efectos de la radiación , Semillas/metabolismo , Grano Comestible/efectos de la radiación , Grano Comestible/metabolismo , Fenotipo
10.
BMJ Case Rep ; 17(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724216

RESUMEN

A man in his 50s was diagnosed with solar urticaria following monochromated light testing that demonstrated exquisite photosensivity to ultraviolet (UV) A, UV B (UVB) and visible light.Treatment options for this photodermatosis are limited; UVB phototherapy is one modality that can be appropriate in some patients. This is administered at very low doses in a controlled environment to induce skin hardening.1 To self-treat his condition, the patient used a commercial sunbed on two occasions several days apart. He noted an immediate flare of solar urticaria after first use with associated dizziness. Following the second use, he felt generally unwell and was witnessed to lose consciousness and displayed jerky movements of his limbs while a passenger in a car. Investigations including a head MRI and an EEG were normal; an anoxic seizure caused by a flare of solar urticaria was later confirmed.Solar urticaria is a rare photodermatosis that is poorly understood and difficult to treat. The condition has a significant impact on the quality of life of patients. Severe cases can be associated with systemic symptoms that could be life-threatening.


Asunto(s)
Trastornos por Fotosensibilidad , Luz Solar , Rayos Ultravioleta , Urticaria , Humanos , Masculino , Urticaria/etiología , Persona de Mediana Edad , Rayos Ultravioleta/efectos adversos , Trastornos por Fotosensibilidad/etiología , Luz Solar/efectos adversos , Terapia Ultravioleta/métodos , Terapia Ultravioleta/efectos adversos , Urticaria Solar
11.
J Sep Sci ; 47(9-10): e2400142, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726732

RESUMEN

Catechins, renowned for their antioxidant properties and health benefits, are commonly present in beverages, particularly tea and wine. An efficient and cost-effective salting-out assisted liquid-liquid extraction (SALLE) method has been developed and validated for the simultaneous determination of six catechins and caffeine in tea and wine samples using high-performance liquid chromatography-ultraviolet (HPLC-UV). This method demonstrates outstanding performance: linearity (1-120 µg/mL, r2 > 0.999), accuracy (96.5%-103.4% recovery), and precision (≤14.7% relative standard deviation), meeting validation requirements set by the US Food and Drug Administration. The reduced sample size (0.1 g) minimizes matrix interferences and costs without compromising sensitivity. All analytes were detected in Camellia sinensis teas, with green tea displaying the highest total catechin content (47.5-100.1 mg/mL), followed by white and black teas. Analysis of wine samples reveals the presence of catechin in all red and white wines, and epigallocatechin gallate in all red wine samples, highlighting the impact of winemaking processes on catechin content. The SALLE-HPLC-UV approach represents a green alternative by eliminating organic waste, surpassing conventional dilution methods in specificity and sensitivity for catechin determination. AGREEprep assessment emphasizes the strengths of the SALLE procedure, including material reusability, throughput efficiency, minimal sample requirements, low energy consumption, and the absence of organic waste generation.


Asunto(s)
Cafeína , Catequina , Extracción Líquido-Líquido , , Vino , Cromatografía Líquida de Alta Presión/métodos , Vino/análisis , Cafeína/análisis , Catequina/análisis , Té/química , Extracción Líquido-Líquido/métodos , Espectrofotometría Ultravioleta , Rayos Ultravioleta
12.
Hereditas ; 161(1): 15, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702800

RESUMEN

BACKGROUND: Rhododendron chrysanthum Pall. (R. chrysanthum) is a plant that lives in high mountain with strong UV-B radiation, so R. chrysanthum possess resistance to UV-B radiation. The process of stress resistance in plants is closely related to metabolism. Lysine acetylation is an important post-translational modification, and this modification process is involved in a variety of biological processes, and affected the expression of enzymes in metabolic processes. However, little is known about acetylation proteomics during UV-B stress resistance in R. chrysanthum. RESULTS: In this study, R. chrysanthum OJIP curves indicated that UV-B stress damaged the receptor side of the PSII reaction center, with a decrease in photosynthesis, a decrease in sucrose content and an increase in starch content. A total of 807 differentially expressed proteins, 685 differentially acetylated proteins and 945 acetylation sites were identified by quantitative proteomic and acetylation modification histological analysis. According to COG and subcellular location analyses, DEPs with post-translational modification of proteins and carbohydrate metabolism had important roles in resistance to UV-B stress and DEPs were concentrated in chloroplasts. KEGG analyses showed that DEPs were enriched in starch and sucrose metabolic pathways. Analysis of acetylation modification histology showed that the enzymes in the starch and sucrose metabolic pathways underwent acetylation modification and the modification levels were up-regulated. Further analysis showed that only GBSS and SSGBSS changed to DEPs after undergoing acetylation modification. Metabolomics analyses showed that the metabolite content of starch and sucrose metabolism in R. chrysanthum under UV-B stress. CONCLUSIONS: Decreased photosynthesis in R. chrysanthum under UV-B stress, which in turn affects starch and sucrose metabolism. In starch synthesis, GBSS undergoes acetylation modification and the level is upregulated, promotes starch synthesis, making R. chrysanthum resistant to UV-B stress.


Asunto(s)
Proteínas de Plantas , Proteómica , Rhododendron , Rayos Ultravioleta , Acetilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Rhododendron/genética , Rhododendron/metabolismo , Rhododendron/fisiología , Estrés Fisiológico , Metabolómica , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Almidón/metabolismo , Fotosíntesis
13.
J Drugs Dermatol ; 23(5): 366-375, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38709706

RESUMEN

OBJECTIVE:   This study aimed to investigate the ultraviolet (UV) protection/repair benefits of a patented Amino Acid Complex (AAComplex). METHODS: I) AAComplex was incubated with dermal fibroblasts, with/without UVA, and collagen I was measured with a GlasBoxPlus device. II) A lotion, with/without AAComplex (1%) was applied topically to skin explants, following UVA irradiation, and quantified for health-related biomarkers (TNFalpha, histamine, and MMP-1). III) A broad spectrum sunscreen with SPF 46 and a skincare serum containing AAComplex (2%) were assessed using epidermal equivalents, in the presence of UV irradiation, for effects on IL-1alpha, thymine dimers, Ki-67, filaggrin and Nrf2. RESULTS: I) Collagen I synthesis in dermal fibroblasts was significantly decreased after UVA compared to without UV. The presence of AAComplex prevented this decrease. II) UVA irradiation of skin explants increased histamine, TNFα, and MMP-1. Hydrocortisone aceponate cream significantly decreases all 3 biomarkers. AAComplex contained lotion also significantly decreased all 3 biomarkers, the no AAComplex control lotion only reduced histamine. III) With the regimen of sunscreen + AAComplex contained skincare serum, the significant reduction in IL-1alpha was observed along with a complete recovery of Ki-67 and stimulation of filaggrin and Nrf2T. No thymine dimer positive cell was observed indicating the most positive skin impact from the regiment.  Conclusion: This research using different human skin models demonstrated that AAComplex can provide protection and damage repair caused by UV, at the ingredient level also when formulated in a serum or lotion formula. Skin may be best protected from UV damage when the regimen is used.   J Drugs Dermatol. 2024;23(5):366-375. doi:10.36849/JDD.7916.


Asunto(s)
Fibroblastos , Proteínas Filagrina , Metaloproteinasa 1 de la Matriz , Factor 2 Relacionado con NF-E2 , Factor de Necrosis Tumoral alfa , Rayos Ultravioleta , Humanos , Rayos Ultravioleta/efectos adversos , Fibroblastos/efectos de los fármacos , Fibroblastos/efectos de la radiación , Fibroblastos/metabolismo , Metaloproteinasa 1 de la Matriz/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Piel/efectos de la radiación , Piel/efectos de los fármacos , Piel/metabolismo , Protectores Solares/administración & dosificación , Protectores Solares/química , Protectores Solares/farmacología , Aminoácidos/administración & dosificación , Aminoácidos/farmacología , Aminoácidos/química , Interleucina-1alfa/metabolismo , Histamina/sangre , Crema para la Piel/administración & dosificación , Biomarcadores/metabolismo , Colágeno Tipo I , Proteínas de Filamentos Intermediarios/metabolismo , Antígeno Ki-67/metabolismo , Dímeros de Pirimidina , Células Cultivadas
14.
Eur J Dermatol ; 34(1): 26-30, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557455

RESUMEN

Gel manicures have become part of a popular personal care service in the last two decades due to increased longevity of the polish and the added strength to the nail plate. Prolonged exposure to nail ultraviolet (UV) lamps is required to cure the gel polish. Despite the increased use of UV nail lamps, there is limited consensus in the literature on the risk of skin malignancy associated with UV nail lamps. The objective of this article was to provide a systematic review of the risk of skin malignancy associated with the use of UV nail lamps and to synthesize evidence-based recommendations on their safe usage. A systematic review of the literature was conducted on the databases, Medline and Embase, in accordance with PRISMA guidelines. The search yielded 2,331 non-duplicate articles. Nine were ultimately included, of which three were case reports, one was a cross-sectional study, and five were experimental studies. The risk of bias per the Joanna Briggs Institute guidelines was high or unclear, likely due to the number of case reports included. Prolonged and repeated exposure to UV nail lamps may pose a low risk of skin cancer. It is important to note that the available evidence is weak, and patients should be informed about the limited data to make their own decisions. Dermatologists and other healthcare providers should be updated with the latest evidence to address patients' concerns about gel manicures and suggest practices which can effectively reduce the risk of cutaneous malignancy associated with gel manicures, such as the use of UV-blocking gloves or properly applied sunscreens.


Asunto(s)
Belleza , Neoplasias Cutáneas , Humanos , Estudios Transversales , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Uñas/patología , Protectores Solares , Rayos Ultravioleta/efectos adversos
15.
Med Arch ; 78(2): 88-91, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38566862

RESUMEN

Background: Prolonged exposure to sunlight is known to induce photoaging of the skin, leading to various skin changes and disorders, such as dryness, wrinkles, irregular pigmentation, and even cancer. Ultraviolet A (UVA) and ultraviolet B (UVB) radiation are particularly responsible for causing photoaging. Objective: This study aims to identify and compare photoaging rat models exposed to UVA and UVB. Methods: This research method compared macroscopic (scoring degree of wrinkling) and microscopic (histology) signs and symptoms on skin samples of rat exposed to UVA and UVB for 4 weeks at a radiation dose of 840mJ/cm2. Results: The results of this study indicated that the degree of wrinkling was highest in rat skin exposed to UVB rays by 51% (p<0.05). UVB histological results showed that the epidermis layer (40 µm, p<0.05) was thickened and the dermis layer (283 µm, p<0.05) was thinned in the skin of mice exposed to UVB light. The UVB group, showed the density of collagen in the dermis with a mean value of 55% (p<0.05). Conclusion: Our results suggest that short-term exposure to UVB radiation (in the acute, subacute or subchronic phase) induces more rapid and pronounced damage to rat skin when compared to UVA radiation exposure.


Asunto(s)
Envejecimiento de la Piel , Ratas , Ratones , Animales , Piel/patología , Rayos Ultravioleta/efectos adversos , Luz Solar
16.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 233-240, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38650128

RESUMEN

Skin photoaging affects appearance and is associated with a variety of skin diseases, even skin cancer. Therefore, the prevention and treatment of skin photoaging is very important. However, there is a lack of effective evaluation methods, so it is an urgent problem to explore a comprehensive, non-invasive and in vivo evaluation method. Adipose-derived mesenchymal stem cells (ADSCs) are widely used to improve skin conditions as easier to obtain and positive effects. Recently, as the development of ultrasound technology, skin ultrasound has been widely used. Changes in skin layer and structure can be observed by high-frequency ultrasound (HFUS). In addition, Shear wave elastography (SWE) technology can be used to monitor the change of skin hardness. However, it is necessary to further explore the ultrasound parameters in interpreting histological changes. We simulate the progression and treatment process of human skin photoaging by using UVB-induced nude mice skin photoaging model and ADSCs injection. The analysis of the degree and therapeutic effect of skin photoaging was conducted by HFUS, SWE and to verify with histopathology. Our study aims to clarify the value of HFUS combined SWE techniques in evaluating the degree and therapeutic efficacy of skin photoaging, which provides theoretical basis for diagnosis and treatment evaluation systems.


Asunto(s)
Células Madre Mesenquimatosas , Ratones Desnudos , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Animales , Envejecimiento de la Piel/efectos de la radiación , Células Madre Mesenquimatosas/citología , Humanos , Piel/efectos de la radiación , Piel/patología , Tejido Adiposo/citología , Diagnóstico por Imagen de Elasticidad , Trasplante de Células Madre Mesenquimatosas/métodos , Ratones , Femenino
17.
J Hazard Mater ; 470: 134258, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608588

RESUMEN

Photochemical active species generated from photosensitizers, e.g., dissolved organic matter (DOM), play vital roles in the transformation of micropollutants in water. Here, butanedione (BD), a redox-active moiety in DOM and widely found in nature, was employed to photo-transform naproxen (NPX) with peracetic acid (PAA) and H2O2 as contrasts. The results obtained showed that the BD exhibited more applicable on NPX degradation. It works in the lake or river water under UV and solar irradiation, and its NPX degradation efficiency was 10-30 times faster than that of PAA and H2O2. The reason for the efficient transformation of pollutants is that the BD system was proved to be a non-free radical dominated mechanism. The quantum yield of BD (Ф254 nm) was calculated to be 0.064, which indicates that photophysical process is the dominant mode of BD conversion. By adding trapping agents, direct energy transfer from 3BD* to NPX (in anoxic environment) or dissolved oxygen (in aerobic environment) was proved to play a major role (> 91 %). Additionally, the BD process reduces the toxicity of NPX and promotes microbial growth after irradiation. Overall, this study significantly deepened the understanding of the transformation between BD and micropollutants, and provided a potential BD-based process for micropollutants removal under solar irradiation.


Asunto(s)
Naproxeno , Fotólisis , Rayos Ultravioleta , Contaminantes Químicos del Agua , Naproxeno/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/efectos de la radiación , Transferencia de Energía , Peróxido de Hidrógeno/química , Ácido Peracético/química , Procesos Fotoquímicos
18.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612578

RESUMEN

Ultraviolet radiation (UVR) has various effects on human cells and tissues, which can lead to a variety of skin diseases and cause inconvenience to people's lives. Among them, solar dermatitis is one of the important risk factors for malignant melanoma, so prevention and treatment of solar dermatitis is very necessary. Additionally, liquiritin (LQ) has anti-inflammatory effects. In this study, we aimed to evaluate the anti-inflammatory and pro-wound healing effects of liquiritin carbomer gel cold paste (LQ-CG-CP) in vitro and in vivo. The results of MTT experiments showed no cytotoxicity of LQ at concentrations of 40 µg/mL and below and cell damage at UVB irradiation doses above 60 mJ/cm2. Moreover, LQ can promote cell migration. ELISA results also showed that LQ inhibited the elevation of the inflammatory factors tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) after UVB irradiation. In the mouse model of solar dermatitis, 2% LQ-CG-CP showed the best therapeutic efficacy for wound healing and relief of itching compared to MEIBAO moist burn moisturizer (MEBO). What is more, the results of skin histopathological examination show that LQ-CG-CP promotes re-epithelialization, shrinks wounds, and promotes collagen production, thus promoting wound healing. Simultaneously, LQ-CG-CP reduced TNF-α, IL-1ß, and IL-6 expression. In addition, LQ-CG-CP was not observed to cause histopathological changes and blood biochemical abnormalities in mice. Overall, LQ-CG-CP has great potential for the treatment of solar dermatitis.


Asunto(s)
Resinas Acrílicas , Dermatitis , Flavanonas , Glucósidos , Quemadura Solar , Animales , Ratones , Humanos , Rayos Ultravioleta , Interleucina-6 , Factor de Necrosis Tumoral alfa , Cicatrización de Heridas , Interleucina-1beta , Antiinflamatorios
19.
Glob Chang Biol ; 30(4): e17283, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38663017

RESUMEN

Stratospheric ozone, which has been depleted in recent decades by the release of anthropogenic gases, is critical for shielding the biosphere against ultraviolet-B (UV-B) radiation. Although the ozone layer is expected to recover before the end of the 21st century, a hole over Antarctica continues to appear each year. Ozone depletion usually peaks between September and October, when fortunately, most Antarctic terrestrial vegetation and soil biota is frozen, dormant and protected under snow cover. Similarly, much marine life is protected by sea ice cover. The ozone hole used to close before the onset of Antarctic summer, meaning that most biota were not exposed to severe springtime UV-B fluxes. However, in recent years, ozone depletion has persisted into December, which marks the beginning of austral summer. Early summertime ozone depletion is concerning: high incident UV-B radiation coincident with snowmelt and emergence of vegetation will mean biota is more exposed. The start of summer is also peak breeding season for many animals, thus extreme UV-B exposure (UV index up to 14) may come at a vulnerable time in their life cycle. Climate change, including changing wind patterns and strength, and particularly declining sea ice, are likely to compound UV-B exposure of Antarctic organisms, through earlier ice and snowmelt, heatwaves and droughts. Antarctic field research conducted decades ago tended to study UV impacts in isolation and more research that considers multiple climate impacts, and the true magnitude and timing of current UV increases is needed.


Asunto(s)
Biota , Cambio Climático , Cubierta de Hielo , Pérdida de Ozono , Nieve , Regiones Antárticas , Animales , Rayos Ultravioleta , Estaciones del Año , Ozono Estratosférico/análisis
20.
Artículo en Inglés | MEDLINE | ID: mdl-38619314

RESUMEN

The photocatalytic degradation process of sulfamethoxazole (SMX) using ZnO in aquatic systems has been systematically studied by varying initial SMX concentration from 0 to 15 mgL-1, ZnO dosage from 0 to 4 gL-1 and UV light intensity at the light source from 0 to 18 W(m-lamp length)-1 at natural pH. Almost complete degradations of SMX were achieved within 120 min for the initial SMX concentration ≤15 mgL-1 with ZnO dosage of 3 gL-1 and UV light intensity of 18 W(m-lamp length)-1. The photocatalytic degradation process was found to be interacted with the dissolved oxygen (DO) consumption. With oxygen supply through the gas-liquid free-surface, the DO concentration decreased significantly in the initial SMX degradation phase and increased asymptotically to the saturated DO concentration after achieving about 80% SMX degradation. The change in DO concentration was probably controlled by the oxygen consumption in the formation of oxygenated radical intermediates. A novel dynamic kinetic model based on the fundamental reactions of photocatalysis and the formation of oxygenated radical intermediates was developed. In the modeling the dynamic concentration profiles of OH radical and DO are considered. The dynamics of SMX degradation process by ZnO was simulated reasonably by the proposed model.


Asunto(s)
Contaminantes Químicos del Agua , Óxido de Zinc , Sulfametoxazol , Antibacterianos/química , Óxido de Zinc/química , Oxígeno/química , Rayos Ultravioleta , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA